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          Buckling of Columns 
                             
          Sections ... 13.1 — 13.3 
 
          Chap. 13 
             [ Hibbeler 9th edition ] 



       The columns of this water tank are braced at their length in order to reduce their 
chance of buckling.   

     Chapter 13 
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     13.1 Critical Load 

 Whenever a member is designed, it is necessary that it satisfy specific 
strength, deflection, and stability requirements.  In the preceding 
chapters, we have discussed some of the methods used to determine a 
member’s strength and deflection, while assuming that the member 
was always in stable equilibrium.     Some members, however, may be 
subjected to compressive loadings, and if these members are long and 
slender the loading may be large enough to cause the member to 
deflect laterally or sidesway. To be specific, long slender members 
subjected to an axial compressive force are called   columns  , and the 
lateral deflection that occurs is called   buckling  . Quite often the 
buckling of a column can lead to a sudden and dramatic failure of a 
structure or mechanism, and as a result, special attention must be given 
to the design of columns so that they can safely support their intended 
loadings without buckling. 

     CHAPTER OBJECTIVES 

 ! In this chapter, we will discuss the behavior of columns and 
indicate some of the methods used for their design. The chapter 
begins with a general discussion of buckling, followed by a 
determination of the axial load needed to buckle a so-called 
ideal column. Afterwards, a more realistic analysis is considered, 
which accounts for any bending of the column. Also, inelastic 
buckling of a column is presented as a special topic. At the end 
of the chapter we will discuss some of the methods used to 
design both concentrically and eccentrically loaded columns 
made of common engineering materials.   

 Buckling of Columns  
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 The maximum axial load that a column can support when it is on the 
 verge  of buckling is called the   critical load  ,    Pcr,     Fig.   13–1   a  . Any additional 
loading will cause the column to buckle and therefore deflect laterally 
as shown in  Fig.   13–1   b  . In order to better understand the nature of this 
instability, consider a two-bar mechanism consisting of weightless bars 
that are rigid and pin connected as shown in  Fig.   13–2   a  . When the bars 
are in the vertical position, the spring, having a stiffness  k , is unstretched, 
and a  small  vertical force  P  is applied at the top of one of the bars. We can 
upset this equilibrium position by displacing the pin at  A  by a small 
amount    !,     Fig.   13–2   b  . As shown on the free-body diagram of the pin when 
the bars are displaced,  Fig.   13–2   c  , the spring will produce a restoring force 
   F = k!,    while the applied load  P  develops two horizontal components, 
   Px = P tan u,    which tend to push the pin (and the bars) further out of 
equilibrium. Since    u    is small,    ! ! u(L >2)    and    tan u ! u.    Thus the  restoring  
spring force becomes    F = kuL >2,    and the disturbing force is    2Px = 2Pu.     

  If the restoring force is greater than the disturbing force, that is, 
   kuL >2 7 2Pu,    then, noticing that    u    cancels out, we can solve for  P , 
which gives 

   P 6 kL
4
  stable equilibrium   

 This is a condition for  stable equilibrium  since the force developed by the 
spring would be adequate to restore the bars back to their vertical 
position. However, if    kLu>2 6 2Pu,    or 

   P 7 kL
4
  unstable equilibrium   

 then the mechanism would be in  unstable equilibrium . In other words, if 
this load  P  is applied, and a slight displacement occurs at  A , the 
mechanism will tend to move out of equilibrium and not be restored to 
its original position. 

    

Pcr

Pcr

(a)  

P " Pcr

P " Pcr

(b)  
 Fig. 13–1       
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 13  

 The intermediate value of  P , which requires    kLu>2 = 2Pu,    is the 
 critical load . Here 

   Pcr =
kL
4
  neutral equilibrium   

 This loading represents a case of the mechanism being in  neutral 
equilibrium . Since    Pcr    is  independent  of the (small) displacement    u    of the 
bars, any slight disturbance given to the mechanism will not cause it to 
move further out of equilibrium, nor will it be restored to its original 
position. Instead, the bars will  remain  in the deflected position. 

 These three different states of equilibrium are represented graphically 
in  Fig.   13–3   . The transition point where the load is equal to the critical 
value    P = Pcr    is called the  bifurcation point . At this point the mechanism 
will be in equilibrium for any  small value  of    u,    measured either to the 
right or to the left of the vertical. Physically,    Pcr    represents the load for 
which the mechanism is on the verge of buckling. It is quite reasonable 
to determine this value by assuming  small displacements  as done here; 
however, it should be understood that    Pcr    may  not  be the largest value of 
 P  that the mechanism can support. Indeed, if a larger load is placed on 
the bars, then the mechanism may have to undergo a further deflection 
before the spring is compressed or elongated enough to hold the 
mechanism in equilibrium. 

  Like the two-bar mechanism just discussed, the critical buckling loads 
on columns supported in various ways can be obtained, and the method 
used to do this will be explained in the next section. Although in 
engineering design the critical load may be considered to be the largest 
load the column can support, realize that, like the two-bar mechanism in 
the deflected or buckled position, a column may actually support an 

    

P

k

(a)

A

L
2

L
2

   

A

(b)

P

k

L
2

L
2

u

u

L
2

! " u( )

   

P

P tan u

u

u

P tan u

F A

P

(c)  
 Fig. 13–2       

 

Bifurcation point

Unstable
equilibrium

P

O

Neutral
equilibrium

Stable
equilibrium

u

Pcr "
kL
4

 Fig. 13–3       

              












































































































664  CHAPTER 13  BUCKL ING OF COLUMNS

 13  

even greater load than    Pcr.    Unfortunately, however, this loading may 
require the column to undergo a  large  deflection, which is generally not 
tolerated in engineering structures or machines. For example, it may take 
only a few newtons of force to buckle a meterstick, but the additional 
load it may support can be applied only after the stick undergoes a 
relatively large lateral deflection.  

  13.2 Ideal Column with Pin Supports 

 In this section we will determine the critical buckling load for a column 
that is pin supported as shown in  Fig.   13–4   a  . The column to be considered 
is an   ideal column  , meaning one that is perfectly straight before loading, 
is made of homogeneous material, and upon which the load is applied 
through the centroid of the cross section. It is further assumed that the 
material behaves in a linear-elastic manner and that the column buckles 
or bends in a single plane. In reality, the conditions of column straightness 
and load application are never accomplished; however, the analysis to be 
performed on an “ideal column” is similar to that used to analyze initially 
crooked columns or those having an eccentric load application. These 
more realistic cases will be discussed later in this chapter. 

   Since an ideal column is straight, theoretically the axial load  P  could 
be increased until failure occurs by either fracture or yielding of the 
material. However, when the critical load    Pcr    is reached, the column will 
be on the verge of becoming unstable, so that a small lateral force  F , 
 Fig.   13–4   b  , will cause the column to remain in the deflected position 
when  F  is removed,  Fig.   13–4   c  . Any slight reduction in the axial load  P  
from    Pcr    will allow the column to straighten out, and any slight increase 
in  P , beyond    Pcr,    will cause further increases in lateral deflection. 

 
       The dramatic failure of this off-shore oil 
platform was caused by the horizontal 
forces of hurricane winds, which led to 
buckling of its supporting columns.   
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 Fig. 13–4       
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 Whether or not a column will remain stable or become unstable when 
subjected to an axial load will depend on its ability to restore itself, 
which is based on its resistance to bending. Hence, in order to determine 
the critical load and the buckled shape of the column,  we will apply 
 Eq.   12–10   , which relates     the internal moment in the column to its 
deflected shape, i.e., 

    EI 
d2v

dx2 = M (13–1)   

  Recall that this equation     assumes that the slope of the elastic curve is 
small and that deflections occur only by bending. When the column is in 
its deflected position,  Fig.   13–5   a  , the internal bending moment can be 
determined by using the method of sections. The free-body diagram of a 
segment in the deflected position is shown in  Fig.   13–5   b  . Here both the 
deflection    v    and the internal moment  M  are shown in the  positive direction  
according to the sign convention used to establish  Eq.   13–1   . Moment 
equilibrium requires    M = -Pv.    Thus  Eq.   13–1    becomes  

   EI 
d2v

dx2 = -Pv   

    
d2v

dx2 + a P
EI

bv = 0 (13–2)   

 This is a homogeneous, second-order, linear differential equation 
with constant coefficients. It can be shown by using the methods of 
differential equations, or by direct substitution into  Eq.   13–2   , that the 
general solution is 

    v = C1 sinaA P
EI

  x b + C2 cosaA P
EI

  x b  (13–3)   

 The two constants of integration are determined from the boundary 
conditions at the ends of the column. Since    v = 0    at    x = 0,    then    C2 = 0.    
And since    v = 0    at    x = L,    then 

   C1 sinaA P
EI

  L b = 0   

 This equation is satisfied if    C1 = 0;    however, then    v = 0,    which is a 
 trivial solution  that requires the column to always remain straight, even 
though the load may cause the column to become unstable. The other 
possibility is for 

   sinaA P
EI

  L b = 0   

 which is satisfied if 

   A P
EI

  L = np   
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 *   n  represents the number of curves in the deflected shape of the column. For example, 
if    n = 2,    then  two  curves will appear,  Fig.   13–5   c  . Here the critical load is 4 Pcr just prior 
to buckling, which practically speaking will not exist. 

 or 

    P =
n2p2EI

L2  n = 1, 2, 3, c  (13–4)   

 The  smallest value  of  P  is obtained when    n = 1,    so the  critical load  for 
the column is therefore  *    

   Pcr =
p2EI

L2    

 This load is sometimes referred to as the  Euler load , named after the 
Swiss mathematician Leonhard Euler, who originally solved this problem 
in 1757. The corresponding buckled shape is defined by the equation 

   v = C1 sin 
px
L

   

 Here the constant    C1    represents the maximum deflection,    vmax,    which 
occurs at the midpoint of the column,  Fig.   13–5   c  . Specific values for    C1    
cannot be obtained, since the exact deflected form for the column is 
unknown once it has buckled. It has been assumed, however, that this 
deflection is small. 

 Note that the critical load is independent of the strength of the 
material; rather it only depends on the column’s dimensions ( I  and  L ) 
and the material’s stiffness or modulus of elasticity  E . For this reason, as 
far as elastic buckling is concerned, columns made, for example, of high-
strength steel offer no advantage over those made of lower-strength 
steel, since the modulus of elasticity for both is approximately the same. 
Also note that the load-carrying capacity of a column will increase as the 
moment of inertia of the cross section increases. Thus, efficient columns 
are designed so that most of the column’s cross-sectional area is located 
as far away as possible from the principal centroidal axes for the section. 
This is why hollow sections such as tubes are more economical than 
solid sections. Furthermore, wide-flange sections, and columns that are 
“built up” from channels, angles, plates, etc., are better than sections that 
are solid and rectangular.  
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 It is also important to realize that a column will buckle about the 
principal axis of the cross section having the   least moment of inertia   (the 
weakest axis) provided it is supported the same way about each axis. For 
example, a column having a rectangular cross section, like a meter stick, 
as shown in  Fig.   13–6   , will buckle about the  a – a  axis, not the  b – b  axis. As 
a result, engineers usually try to achieve a balance, keeping the moments 
of inertia the same in all directions. Geometrically, then, circular tubes 
would make excellent columns. Also, square tubes or those shapes having 
   Ix ! Iy    are often selected for columns. 

   Summarizing the above discussion, the buckling equation for a 
pin-supported long slender column can be rewritten, and the terms 
defined as follows: 

    Pcr =
p 

2EI
L2

 (13–5)   

 where 
      Pcr =     critical or maximum axial load on the column just before it 

begins to buckle. This load must  not  cause the stress in the 
column to exceed the proportional limit  

     E =    modulus of elasticity for the material  
     I =    least moment of inertia for the column’s cross-sectional area  
     L =    unsupported length of the column, whose ends are pinned   

 For purposes of design, the above equation can also be written in a 
more useful form by expressing    I = Ar 2,    where  A  is the cross-sectional 
area and  r  is the   radius of gyration   of the cross-sectional area. Thus, 

    Pcr =
p2E(Ar 2)

L2

 a P
A
b

cr
=

p 2E
(L >r)2    

 or 

    scr =
p 

2E
(L >r)2  (13–6)   

 Here 
      scr =      critical stress, which is an average normal stress in the column 

just before the column buckles. This stress is an  elastic stress  
and therefore    scr … sY      

     E =     modulus of elasticity for the material  
     L =     unsupported length of the column, whose ends are pinned  
     r =     smallest radius of gyration of the column, determined from 

   r = 2I>A ,    where  I  is the  least  moment of inertia of the 
column’s cross-sectional area  A    

 The geometric ratio    L >r    in  Eq.   13–6    is known as the   slenderness ratio  . It 
is a measure of the column’s flexibility, and as will be discussed later, 
it serves to classify columns as long, intermediate, or short. 

 
       Failure of this crane boom was caused by 
the localized buckling of one of its tubular 
struts.   
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 It is possible to graph  Eq.   13–6    using axes that represent the critical 
stress versus the slenderness ratio. Examples of this graph for columns 
made of a typical structural steel and aluminum alloy are shown in 
 Fig.   13–7   . Note that the curves are hyperbolic and are valid only for 
critical stresses below the material’s yield point (proportional limit), 
since the material must behave elastically. For the steel the yield 
stress is    (sY)st = 36 ksi [Est = 29(103) ksi],    and for the aluminum it is 
   (sY)al = 27 ksi [Eal = 10(103) ksi].    Substituting    scr = sY     into  Eq.   13–6   , 
the  smallest  allowable slenderness ratios for the steel and aluminum 
columns are therefore    (L >r)st = 89    and    (L >r)al = 60.5,    respectively. 
Thus, for a steel column, if    (L >r)st Ú 89,    Euler’s formula can be used 
to determine the critical load since the stress in the column remains 
elastic. On the other hand, if    (L >r)st 6 89,    the column’s stress will 
exceed the yield point before buckling can occur, and therefore the 
Euler formula is not valid in this case.   
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 Fig. 13–7       

  Important Points 

    •    Columns  are long slender members that are subjected to axial 
compressive loads.  

   •   The  critical load  is the maximum axial load that a column can 
support when it is on the verge of buckling. This loading represents 
a case of  neutral equilibrium .  

   •   An  ideal column  is initially perfectly straight, made of homogeneous 
material, and the load is applied through the centroid of the 
cross section.  

   •   A pin-connected column will buckle about the principal axis of 
the cross section having the  least  moment of inertia.  

   •   The  slenderness ratio  is    L >r   , where  r  is the smallest radius of 
gyration of the cross section. Buckling will occur about the axis 
where this ratio gives the greatest value.    
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   EXAMPLE   13.1  

 The A992 steel    W8 * 31    member shown in  Fig.   13–8    is to be used as 
a pin-connected column. Determine the largest axial load it can 
support before it either begins to buckle or the steel yields. 

  

12 ft

x

x

y y

 Fig. 13–8        

  SOLUTION 
  From the table in  Appendix   B   , the column’s cross-sectional area     and 
moments of inertia are    A = 9.13 in2,       Ix = 110 in4,    and    Iy = 37.1 in4.    
By inspection, buckling will occur about the  y – y  axis. Why? Applying 
 Eq.   13–5   , we have 

   Pcr =
p2EI

L2 =
p2[29(103) kip>in2](37.1 in4)

[12 ft(12 in.>ft)]2 = 512 kip   

 When fully loaded, the average compressive stress in the column is 

   scr =
Pcr

A
=

512 kip

9.13 in2 = 56.1 ksi   

 Since this stress exceeds the yield stress (50 ksi), the load  P  is 
determined from simple compression: 

   50 ksi =
P

9.13 in2; P = 456 kip      Ans.  

 In actual practice, a factor of safety would be placed on this loading.    
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  13.3  Columns Having Various Types 
of Supports 

 The Euler load was derived for a column that is pin connected or free to 
rotate at its ends. Oftentimes, however, columns may be supported in 
some other way. For example, consider the case of a column fixed at its 
base and free at the top,  Fig.   13–9   a  . As the column buckles the load 
displaces    d    and at  x  the displacement is  v . From the free-body diagram in 
 Fig.   13–9   b  , the internal moment at the arbitrary section is    M = P(d - v).    
Consequently, the differential equation for the deflection curve is  

   EI 
d2v

dx2 = P(d - v)   

    
d2v

dx2 + P
EI

 v =
P
EI

 d (13–7)   

 Unlike  Eq.   13–2   , this equation is nonhomogeneous because of the 
nonzero term on the right side. The solution consists of both a 
complementary and a particular solution, namely, 

   v = C1 sinaA P
EI

 x b + C2 cosaA P
EI

 x b + d   

 The constants are determined from the boundary conditions. At    x = 0,    
   v = 0,    so that    C2 = -d.    Also, 

   
dv
dx

= C1A P
EI

 cosaA P
EI

 x b - C2A P
EI

 sinaA P
EI

 x b    

 At    x = 0,       dv>dx = 0,    so that    C1 = 0.    The deflection curve is therefore 

    v = d c 1 - cosaA P
EI

 x b d  (13–8)   

 Since the deflection at the top of the column is    d,    that is, at    x = L,    
   v = d,    we require 

   d cosaA P
EI

 L b = 0   

 The trivial solution    d = 0    indicates that no buckling occurs, regardless of 
the load  P . Instead, 

   cosaA P
EI

 L b = 0  or  A P
EI

 L =
np
2

,   n = 1, 3, 5c    

 The smallest critical load occurs when    n = 1,    so that 

    Pcr =
p2EI
4L2  (13–9)   

 By comparison with  Eq.   13–5   , it is seen that a column fixed supported 
at its base and free at its top will support only one-fourth the critical load 
that can be applied to a column pin supported at both ends.  
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 Fig. 13–9       

 
       The tubular columns used to support this 
water tank have been braced at three 
locations along their length to prevent 
them from buckling.   
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 Other types of supported columns are analyzed in much the same way 
and will not be covered in detail here.  *   Instead, we will tabulate the 
results for the most common types of column support and show how to 
apply these results by writing Euler’s formula in a general form.  

  Effective Length.   As stated previously, the Euler formula,  Eq.   13–5   , 
was developed for the case of a column having ends that are pinned or 
free to rotate. In other words,  L  in the equation represents the 
unsupported distance between the points of zero moment. This formula 
can be used to determine the critical load on columns having other types 
of support provided “ L ” represents the distance between the  zero-
moment points. This distance is called the column’s   effective length  ,    Le.    
Obviously, for a pin-ended column    Le = L,     Fig.   13–10   a  . For the fixed- 
and free-ended column, the deflection curve,  Eq.   13–8   , was found to be 
one-half that of a column that is pin connected and has a length of 2L, 
 Fig.   13–10   b  . Thus the effective length between the points of zero moment 
is    Le = 2L.    Examples for two other columns with different end supports 
are also shown in  Fig.   13–10   . The column fixed at its ends,  Fig.   13–10   c  , 
has inflection points or points of zero moment    L >4    from each support. 
The effective length is therefore represented by the middle half of its 
length, that is,    Le = 0.5L.    Lastly, the pin- and fixed-ended column, 
 Fig.   13–10   d  , has an inflection point at approximately 0.7L from its pinned 
end, so that    Le = 0.7L.    

  Rather than specifying the column’s effective length, many design 
codes provide column formulas that employ a dimensionless coefficient 
 K  called the   effective-length factor  . This factor is defined from 

    Le = KL (13–10)   

 Specific values of  K  are also given in  Fig.   13–10   . Based on this generality, 
we can therefore write Euler’s formula as 

    Pcr =
p2EI

(KL)2  (13–11)   

 or 

    scr =
p2E

(KL >r)2  (13–12)   

 Here    (KL >r)    is the column’s   effective-slenderness ratio  . For example, 
if the column is fixed at its base and free at its end, we have    K = 2,    and 
therefore  Eq.   13–11    gives the same result as  Eq.   13–9   . 

 *  See  Problems   13–43   ,    13–44   , and    13–45   . 
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   EXAMPLE   13.2  

 A    W6 * 15    steel column is 24 ft long and is fixed at its ends as shown 
in  Fig.   13–11   a  . Its load-carrying capacity is increased by bracing it 
about the  y – y  (weak) axis using struts that are assumed to be pin 
connected to its midheight. Determine the load it can support so that 
the column does not buckle nor the material exceed the yield stress. 
Take    Est = 29(103) ksi    and    sY = 60 ksi.    

   SOLUTION 
 The buckling behavior of the column will be  different  about the  x – x  and 
 y – y  axes due to the bracing. The buckled shape for each of these cases is 
shown in  Figs.   13–11   b   and    13–11   c  . From  Fig.   13–11   b  , the effective length 
for buckling about the  x – x  axis is    (KL)x = 0.5(24 ft) = 12 ft = 144 in.,    
and from  Fig.   13–11   c  , for buckling about the  y – y  axis,    (KL)y =     
   0.7(24 ft>2) = 8.40 ft = 100.8 in.     The moments of inertia for a    W6 * 15    
are found from the table in  Appendix   B   .  We have    Ix = 29.1 in4,    
   Iy = 9.32 in4.    

 Applying  Eq.   13–11   , 

     (Pcr)x =
p2EIx

(KL)x
2 =

p2[29(103) ksi]29.1 in4

(144 in.)2 = 401.7 kip (1)   

     (Pcr)y =
p2EIy

(KL)y
2 =

p2[29(103) ksi]9.32 in4

(100.8 in.)2 = 262.5 kip (2)   

 By comparison, buckling will occur about the  y – y  axis. 
 The area of the cross section is    4.43 in2,    so the average compressive 

stress in the column is 

   scr =
Pcr

A
=

262.5 kip

4.43 in2 = 59.3 ksi   

 Since this stress is less than the yield stress, buckling will occur before 
the material yields. Thus, 
    Pcr = 263 kip      Ans.  

  NOTE:   From  Eq.   13–12    it can be seen that buckling will always occur 
about the column axis having the  largest  slenderness ratio, since a 
large slenderness ratio will give a small critical stress.  Thus, using the 
data for the radius of gyration from the table in  Appendix   B   , we have     

    aKL
r
b

x
=

144 in.
2.56 in.

= 56.2

 aKL
r
b

y
=

100.8 in.
1.46 in.

= 69.0   

 Hence,  y – y  axis buckling will occur, which is the same conclusion 
reached by comparing  Eqs.   1    and    2   .    
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   EXAMPLE   13.3  

 The aluminum column is braced at its top by cables so as to prevent 
movement at the top along the  x  axis,  Fig.   13–12   a  . If it is assumed to be 
fixed at its base, determine the largest allowable load  P  that can 
be applied. Use a factor of safety for buckling of    F.S. = 3.0.    Take 
   Eal = 70 GPa,       sY = 215 MPa,       A = 7.5(10-3) m2,       Ix = 61.3(10-6) m4,     
   Iy = 23.2(10-6) m4.     

  SOLUTION 
 Buckling about the  x  and  y  axes is shown in  Figs.   13–12   b   and    13–12   c  , 
respectively. Using  Fig.   13–10   a  , for  x – x  axis buckling,    K = 2,    so 
   (KL)x = 2(5 m) = 10 m.    Also, for  y – y  axis buckling,    K = 0.7,    so 
   (KL)y = 0.7(5 m) = 3.5 m.    

 Applying  Eq.   13–11   , the critical loads for each case are 

    (Pcr)x =
p2EIx

(KL)x
2 =

p2[70(109) N>m2](61.3(10-6) m4)

(10 m)2

 = 424 kN

 (Pcr)y =
p2EIy

(KL)y
2 =

p2[70(109) N>m2](23.2(10-6) m4)

(3.5 m)2

 = 1.31 MN    

 By comparison, as  P  is increased the column will buckle about the 
 x – x  axis. The allowable load is therefore 

    Pallow =
Pcr

F.S.
=

424 kN
3.0

= 141 kN      Ans.  

 Since 

   scr =
Pcr

A
=

424 kN
7.5(10-3) m2 = 56.5 MPa 6 215 MPa   

 Euler’s equation can be applied.   

   (a)

P

x

y

5 m

z

x–x axis buckling

(b)

Le ! 10 m

y–y axis buckling

(c)

Le ! 3.5 m

 Fig. 13–12               
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